ARTICLE

Optimizing Estrogen & its Metabolism for Breast Health

Lauren Young, ND

| 10/07/2025

Understanding your hormones and how your body detoxes them can help protect your breast tissue. Whether you have hormone imbalance or a concern for breast cancer, understanding your biochemistry can help protect you and your breasts. 

Know Your Biochemistry 

There are many hormones that play a role with breast health and cancer, but the most important is estrogen, specifically when estrogen is in excess. Estrogen dominance refers to this exact state in which estrogen activity is disproportionately high relative to other sex hormones, particularly progesterone. This is clinically relevant because elevated estrogen exposure is a well-established driver of breast cancer risk, especially for estrogen receptor–positive (ER+) subtypes.[1-3] When we think about hormone testing: many options are available, from serum to saliva, but most valuable testing in this scenario is dry urine testing. Dry urine testing allows for measurement of not only estrogens, but also their metabolites, which is not available in serum or saliva. Moreover, it allows us to assess estrogen exposure over a period of time rather than a single time point, which is a limitation of serum and saliva testing.[9] 

Know Your Estrogens 

In the context of evaluating estrogen dominance and breast cancer risk, dry urine testing can provide a comprehensive profile of estrogens (estrone, estradiol, estriol) and their metabolites, including those produced via different metabolic pathways (e.g., 2-hydroxylation, 4-hydroxylation, 16α-hydroxylation).[9-13)  These profiles are relevant because higher urinary excretion of estrogens and certain metabolites—particularly in postmenopausal women—has been associated with increased breast cancer risk.[9][11-13] 

By assessing the full picture and context of estrogens and their metabolites, we see how someone has unseen risks for breast cancer as well as simple solutions to modify this risk. Estrogen is a collective term for a group of steroid hormones, primarily including estradiol, estrone, and estriol, which exert their effects via estrogen receptors and play central roles in breast cancer pathophysiology. Estradiol is the predominant estrogen in premenopausal women, while estrone becomes the major circulating estrogen after menopause due to peripheral conversion in adipose tissue. Estriol is a weaker estrogen, mainly produced during pregnancy, and is present at low levels otherwise. 

Estrone is strongly associated with increased risk of postmenopausal, estrogen receptor–positive (ER+) breast cancer. Elevated urinary estrone levels correlate with higher risk, and estrone-driven signaling promotes pro-inflammatory and pro-metastatic gene expression in breast tissue, especially in the context of obesity and menopause.[14-20] Estrone binding to ERα stimulates epithelial-to-mesenchymal transition and tumor progression, whereas estradiol has more anti-inflammatory effects and in some studies is less associated with postmenopausal breast cancer progression.[14-15] 

Estriol is a weak estrogen with lower affinity for estrogen receptors. While it can stimulate breast cancer cell growth in vitro, its mitogenic potency is much less than estradiol or estrone, and its role in breast cancer risk outside of pregnancy is considered minor. Estriol can activate estrogen-responsive genes and promote proliferation at high concentrations, but clinical data do not support a protective or antiestrogenic effect in breast cancer.[21-22] 

In summary, estrone is the major postmenopausal estrogen and is most strongly linked to increased breast cancer risk and progression, while estriol is a weak estrogen with limited impact on breast cancer risk. The overall burden of estrogen exposure, especially from estrone and estradiol, is a key driver of ER+ breast cancer pathophysiology.[14-20] 

Modify Your Risk 

By a large margin, lifestyle modifications are the most effective strategies at improving estrogen levels. Healthy body composition/weight loss, reduced caloric intake, and regular exercise have consistently demonstrated reductions in estrone and other estrogen levels in randomized controlled trials, with combined interventions yielding the greatest effect. For example, a meta-analysis of RCTs in postmenopausal women found that a combined diet and exercise intervention reduced estrone by approximately 10% compared to controls, as well as reductions in estradiol and free testosterone.[25] Adopting a Mediterranean-style, low-fat, high-fiber diet further supports estrone reduction; controlled feeding studies show that very low fat (10% of calories) and high fiber (35–45 g/day) diets can significantly lower serum estrone and estradiol without disrupting ovulatory function. Alcohol reduction is also recommended, as alcohol intake increases circulating estrogen levels, including estrone.[23][26] 

Among natural therapies and dietary supplements, soy isoflavones (genistein, daidzein) and lignans (flaxseed) have the most evidence for modulating estrone metabolism and potentially reducing breast cancer risk.  Soy isoflavones act as selective estrogen receptor modulators (SERMs), preferentially binding ERβ and exerting antiestrogenic effects in breast tissue. Clinical trials and preclinical models demonstrate that dietary soy isoflavones can lower serum estrone and estradiol, with doses ranging from 40 mg/day (dietary intake) to 240 mg/day (supplementation) showing reductions in breast proliferation and estrone concentrations, especially in high-estrogen environments.[26-29] Flaxseed lignans also exhibit antiestrogenic effects by competing for estrogen receptor binding and inhibiting estrone synthesis, with epidemiologic data suggesting lower breast cancer incidence in populations with high flaxseed intake.[22] 

Black cohosh (Actaea racemosa) has been shown in vitro to inhibit the conversion of estrone sulfate to estradiol in breast cancer cells, potentially reducing the pool of bioactive estrogens available for tumor growth.[30] However, clinical data are limited and inconsistent, and some studies have found no substantial effect on serum estrogen measures in premenopausal women.[31] Though black cohosh may lack robust research, given the safety profile and other benefits it may be beneficial to consider for patient treatment plans. 

Given the many tools and resources, we have available to improve estrogen balance and reduce estrogen dominance, anyone with concern about breast health should understand their estrogens. 

Know Your Metabolites 

Another risk factor that is easily gleaned from a dry urine test and just as easily modifiable is the estrogen metabolites: aptly named the “good” (2-hydroxy), the “bad” (4-hydroxy) and the “ugly” (16alpha-hydroxy). The significance of the 2-hydroxy, 4-hydroxy, and 16-alpha-hydroxy estrogen metabolites lies in their distinct biological activities and associations with breast cancer risk. 

2-hydroxy estrogen metabolites are considered less estrogenic and less genotoxic. Extensive metabolism of estrogens via the 2-hydroxylation pathway is consistently associated with a lower risk of postmenopausal breast cancer. Higher ratios of 2-hydroxylation to estrogens, or to 16-hydroxylation metabolites, are inversely associated with risk, suggesting a protective effect.[32-37] 2-hydroxylation reduces estrogen receptor activation and downstream proliferative signaling in breast tissue.[38] 

4-hydroxy estrogen metabolites are catechol estrogens with strong genotoxic potential. They can form quinones that react with DNA, leading to mutations and cellular transformation. Less extensive methylation of 4-hydroxylation pathway catechols is associated with a higher risk of breast cancer, as these metabolites are more likely to induce DNA damage and oxidative stress.[32][39-43] 

16-alpha-hydroxy estrogen metabolites are highly estrogenic and can covalently bind to estrogen receptors, resulting in persistent proliferative signaling. Greater metabolism via the 16α-hydroxylation pathway is associated with a higher risk of breast cancer, as these metabolites promote cell proliferation and may contribute to tumorigenesis.[33][37][39-41] 

In summary, greater 2-hydroxylation is associated with lower breast cancer risk, while greater 4-hydroxylation and 16α-hydroxylation are associated with higher risk. The good news is that balance of these metabolic pathways is a very modifiable factor in breast cancer prevention.[32-37][39-41] 

As complicated as the metabolites can sound, the solutions to create an optional ratio between 2-hydroxy and 16-hydroxy is simple. All of the previously outlined dietary and lifestyle modifications that improve estrone levels, also improve metabolites.(44-46) 

Additionally, a nutrient from broccoli and cabbage (the cruciferous vegetables) has substantial research supporting its ability to improve the estrogen metabolite ratios. Glucobrassin and myrosinase combine to create indole-3-carbinol, a relatively unstable byproduct of chewing up your broccoli that then easily converts to 3,3-diindolymethane (DIM). DIM works to improve estrogen metabolite ratios by promoting CYP450 enzymes (specifically CYP1A1) to favor 2-hydroxylation.(47-48) Flavonoids and stilbenes, found in foods like soy, berries, and tea, can inhibit CYP1B1, reducing formation of genotoxic 4-hydroxy metabolites.(47-48) Given their strong safety profile and additional health benefits, these nutrients are an easy addition to a breast cancer prevention plan. 

Know Your Risk and Your Plan 

Testing urinary hormone metabolites gives a wealth of information about risk factors for breast cancer and helps target imbalances in hormones that can create a personalized, targeted, informed and motivating treatment plan. 

Learn more about how the DUTCH Test can help you and your patients create a personalized treatment plan by becoming a DUTCH Provider today.

 

References 

  1. Wiggs AG, Chandler JK, Aktas A, Sumner SJ, Stewart DA. The Effects of Diet and Exercise on Endogenous Estrogens and Subsequent Breast Cancer Risk in Postmenopausal Women. Front Endocrinol (Lausanne). 2021 Sep 20;12:732255. doi: 10.3389/fendo.2021.732255. PMID: 34616366; PMCID: PMC8489575. 
  2. Guinter MA, McLain AC, Merchant AT, Sandler DP, Steck SE. An estrogen-related lifestyle score is associated with risk of postmenopausal breast cancer in the PLCO cohort. Breast Cancer Res Treat. 2018 Aug;170(3):613-622. doi: 10.1007/s10549-018-4784-0. Epub 2018 Apr 12. PMID: 29651647; PMCID: PMC6026043. 
  3. Assi N, Rinaldi S, Viallon V, Dashti SG, Dossus L, Fournier A, Cervenka I, Kvaskoff M, Turzanski-Fortner R, Bergmann M, Boeing H, Panico S, Ricceri F, Palli D, Tumino R, Grioni S, Sánchez Pérez MJ, Chirlaque MD, Bonet C, Gurrea AB, Amiano Etxezarreta P, Merino S, Bueno de Mesquita HB, van Gils CH, Onland-Moret C, Tjønneland A, Overvad K, Trichopoulou A, Martimianaki G, Karakatsani A, Key T, Christakoudi S, Ellingjord-Dale M, Tsilidis K, Riboli E, Kaaks R, Gunter MJ, Ferrari P. Mediation analysis of the alcohol-postmenopausal breast cancer relationship by sex hormones in the EPIC cohort. Int J Cancer. 2020 Feb 1;146(3):759-768. doi: 10.1002/ijc.32324. Epub 2019 Apr 30. PMID: 30968961; PMCID: PMC6786903. 
  4. Bevers TB, Ward JH, Arun BK, Colditz GA, Cowan KH, Daly MB, Garber JE, Gemignani ML, Gradishar WJ, Jordan JA, Korde LA, Kounalakis N, Krontiras H, Kumar S, Kurian A, Laronga C, Layman RM, Loftus LS, Mahoney MC, Merajver SD, Meszoely IM, Mortimer J, Newman L, Pritchard E, Pruthi S, Seewaldt V, Specht MC, Visvanathan K, Wallace A, Bergman MA, Kumar R. Breast Cancer Risk Reduction, Version 2.2015. J Natl Compr Canc Netw. 2015 Jul;13(7):880-915. doi: 10.6004/jnccn.2015.0105. PMID: 26150582. 
  5. Hvidtfeldt UA, Tjønneland A, Keiding N, Lange T, Andersen I, Sørensen TI, Prescott E, Hansen ÅM, Grønbæk M, Bojesen SE, Diderichsen F, Rod NH. Risk of breast cancer in relation to combined effects of hormone therapy, body mass index, and alcohol use, by hormone-receptor status. Epidemiology. 2015 May;26(3):353-61. doi: 10.1097/EDE.0000000000000261. PMID: 25695354. 
  6. Tin Tin S, Smith-Byrne K, Ferrari P, Rinaldi S, McCullough ML, Teras LR, Manjer J, Giles G, Le Marchand L, Haiman CA, Wilkens LR, Chen Y, Hankinson S, Tworoger S, Eliassen AH, Willett WC, Ziegler RG, Fuhrman BJ, Sieri S, Agnoli C, Cauley J, Menon U, Fourkala EO, Rohan TE, Kaaks R, Reeves GK, Key TJ. Alcohol intake and endogenous sex hormones in women: Meta-analysis of cohort studies and Mendelian randomization. Cancer. 2024 Oct 1;130(19):3375-3386. doi: 10.1002/cncr.35391. Epub 2024 Jun 2. PMID: 38824654. 
  7. Smith-Warner SA, Spiegelman D, Yaun S, et al. Alcohol and Breast Cancer in Women: A Pooled Analysis of Cohort Studies. JAMA. 1998;279(7):535–540. doi:10.1001/jama.279.7.535 
  8. Floud S, Hermon C, Simpson RF, Reeves GK. Alcohol consumption and cancer incidence in women: interaction with smoking, body mass index and menopausal hormone therapy. BMC Cancer. 2023 Aug 16;23(1):758. doi: 10.1186/s12885-023-11184-8. PMID: 37587405; PMCID: PMC10428611. 
  9. Newman MS, Curran DA, Mayfield BP, Saltiel D, Stanczyk FZ. Assessment of estrogen exposure from transdermal estradiol gel therapy with a dried urine assay. Steroids. 2022 Aug;184:109038. doi: 10.1016/j.steroids.2022.109038. Epub 2022 Apr 26. PMID: 35483542. 
  10. Darville LNF, Cline JK, Rozmeski C, Martinez YC, Rich S, Eschrich SA, Egan KM, Yaghjyan L, Koomen JM. LC-HRMS of derivatized urinary estrogens and estrogen metabolites in postmenopausal women. J Chromatogr B Analyt Technol Biomed Life Sci. 2020 Oct 1;1154:122288. doi: 10.1016/j.jchromb.2020.122288. Epub 2020 Jul 29. PMID: 32769047; PMCID: PMC7882395. 
  11. Huang J, Sun J, Chen Y, Song Y, Dong L, Zhan Q, Zhang R, Abliz Z. Analysis of multiplex endogenous estrogen metabolites in human urine using ultra-fast liquid chromatography-tandem mass spectrometry: a case study for breast cancer. Anal Chim Acta. 2012 Jan 20;711:60-8. doi: 10.1016/j.aca.2011.10.058. Epub 2011 Nov 7. PMID: 22152797. 
  12. Xu X, Veenstra TD, Fox SD, Roman JM, Issaq HJ, Falk R, Saavedra JE, Keefer LK, Ziegler RG. Measuring fifteen endogenous estrogens simultaneously in human urine by high-performance liquid chromatography-mass spectrometry. Anal Chem. 2005 Oct 15;77(20):6646-54. doi: 10.1021/ac050697c. PMID: 16223252. 
  13. Key TJ, Wang DY, Brown JB, Hermon C, Allen DS, Moore JW, Bulbrook RD, Fentiman IS, Pike MC. A prospective study of urinary oestrogen excretion and breast cancer risk. Br J Cancer. 1996 Jun;73(12):1615-9. doi: 10.1038/bjc.1996.304. PMID: 8664140; PMCID: PMC2074556. 
  14. Qureshi R, Picon-Ruiz M, Aurrekoetxea-Rodriguez I, Nunes de Paiva V, D'Amico M, Yoon H, Radhakrishnan R, Morata-Tarifa C, Ince T, Lippman ME, Thaller SR, Rodgers SE, Kesmodel S, Vivanco MDM, Slingerland JM. The Major Pre- and Postmenopausal Estrogens Play Opposing Roles in Obesity-Driven Mammary Inflammation and Breast Cancer Development. Cell Metab. 2020 Jun 2;31(6):1154-1172.e9. doi: 10.1016/j.cmet.2020.05.008. PMID: 32492394. 
  15. Qureshi R, Picon-Ruiz M, Sho M, Van Booven D, Nunes de Paiva V, Diaz-Ruano AB, Ince TA, Slingerland J. Estrone, the major postmenopausal estrogen, binds ERa to induce SNAI2, epithelial-to-mesenchymal transition, and ER+ breast cancer metastasis. Cell Rep. 2022 Nov 15;41(7):111672. doi: 10.1016/j.celrep.2022.111672. PMID: 36384125; PMCID: PMC9798480. 
  16. Albers FEM, Lou MWC, Dashti SG, Swain CTV, Rinaldi S, Viallon V, Karahalios A, Brown KA, Gunter MJ, Milne RL, English DR, Lynch BM. Sex-steroid hormones and risk of postmenopausal estrogen receptor-positive breast cancer: a case-cohort analysis. Cancer Causes Control. 2024 Jun;35(6):921-933. doi: 10.1007/s10552-024-01856-6. Epub 2024 Feb 16. PMID: 38363402; PMCID: PMC11130059. 
  17. Onland-Moret NC, Kaaks R, van Noord PA, Rinaldi S, Key T, Grobbee DE, Peeters PH. Urinary endogenous sex hormone levels and the risk of postmenopausal breast cancer. Br J Cancer. 2003 May 6;88(9):1394-9. doi: 10.1038/sj.bjc.6600890. PMID: 12778067; PMCID: PMC2741036. 
  18. Adly L, Hill D, Sherman ME, Sturgeon SR, Fears T, Mies C, Ziegler RG, Hoover RN, Schairer C. Serum concentrations of estrogens, sex hormone-binding globulin, and androgens and risk of breast cancer in postmenopausal women. Int J Cancer. 2006 Nov 15;119(10):2402-7. doi: 10.1002/ijc.22203. PMID: 16894564. 
  19. Miyoshi Y, Tanji Y, Taguchi T, Tamaki Y, Noguchi S. Association of serum estrone levels with estrogen receptor-positive breast cancer risk in postmenopausal Japanese women. Clin Cancer Res. 2003 Jun;9(6):2229-33. PMID: 12796390. 
  20. Lippman M, Monaco ME, Bolan G. Effects of estrone, estradiol, and estriol on hormone-responsive human breast cancer in long-term tissue culture. Cancer Res. 1977 Jun;37(6):1901-7. PMID: 870192. 
  21. Diller M, Schüler S, Buchholz S, Lattrich C, Treeck O, Ortmann O. Effects of estriol on growth, gene expression and estrogen response element activation in human breast cancer cell lines. Maturitas. 2014 Apr;77(4):336-43. doi: 10.1016/j.maturitas.2014.01.004. Epub 2014 Jan 23. PMID: 24529907. 
  22. Clemons M, Goss P. Estrogen and the Risk of Breast Cancer. The New England Journal of Medicine. 2001;344(4):276-85. doi:10.1056/NEJM200101253440407. 
  23. Wiggs AG, Chandler JK, Aktas A, Sumner SJ, Stewart DA. The Effects of Diet and Exercise on Endogenous Estrogens and Subsequent Breast Cancer Risk in Postmenopausal Women. Front Endocrinol (Lausanne). 2021 Sep 20;12:732255. doi: 10.3389/fendo.2021.732255. PMID: 34616366; PMCID: PMC8489575. 
  24. de Roon M, May AM, McTiernan A, Scholten RJPM, Peeters PHM, Friedenreich CM, Monninkhof EM. Effect of exercise and/or reduced calorie dietary interventions on breast cancer-related endogenous sex hormones in healthy postmenopausal women. Breast Cancer Res. 2018 Aug 2;20(1):81. doi: 10.1186/s13058-018-1009-8. PMID: 30071893; PMCID: PMC6090977. 
  25. Bagga D, Ashley JM, Geffrey SP, Wang HJ, Barnard RJ, Korenman S, Heber D. Effects of a very low fat, high fiber diet on serum hormones and menstrual function. Implications for breast cancer prevention. Cancer. 1995 Dec 15;76(12):2491-6. doi: 10.1002/1097-0142(19951215)76:12<2491::aid-cncr2820761213>3.0.co;2-r. PMID: 8625075. 
  26. Kumar NB, Cantor A, Allen K, Riccardi D, Cox CE. The specific role of isoflavones on estrogen metabolism in premenopausal women. Cancer. 2002 Feb 15;94(4):1166-74. doi: 10.1002/cncr.10320. PMID: 11920488; PMCID: PMC2377415. 
  27. Wood CE, Register TC, Franke AA, Anthony MS, Cline JM. Dietary soy isoflavones inhibit estrogen effects in the postmenopausal breast. Cancer Res. 2006 Jan 15;66(2):1241-9. doi: 10.1158/0008-5472.CAN-05-2067. PMID: 16424064. 
  28. Intharuksa A, Arunotayanun W, Na Takuathung M, Chaichit S, Prasansuklab A, Chaikhong K, Sirichanchuen B, Chupradit S, Koonrungsesomboon N. Daidzein and Genistein: Natural Phytoestrogens with Potential Applications in Hormone Replacement Therapy. Int J Mol Sci. 2025 Jul 20;26(14):6973. doi: 10.3390/ijms26146973. PMID: 40725220; PMCID: PMC12294992. 
  29. Basu P, Maier C. Phytoestrogens and breast cancer: In vitro anticancer activities of isoflavones, lignans, coumestans, stilbenes and their analogs and derivatives. Biomed Pharmacother. 2018 Nov;107:1648-1666. doi: 10.1016/j.biopha.2018.08.100. Epub 2018 Sep 8. PMID: 30257383. 
  30. Rice S, Amon A, Whitehead SA. Ethanolic extracts of black cohosh (Actaea racemosa) inhibit growth and oestradiol synthesis from oestrone sulphate in breast cancer cells. Maturitas. 2007 Apr 20;56(4):359-67. doi: 10.1016/j.maturitas.2006.10.002. Epub 2006 Nov 27. PMID: 17125943. 
  31. Greenlee H, Atkinson C, Stanczyk FZ, Lampe JW. A pilot and feasibility study on the effects of naturopathic botanical and dietary interventions on sex steroid hormone metabolism in premenopausal women. Cancer Epidemiol Biomarkers Prev. 2007 Aug;16(8):1601-9. doi: 10.1158/1055-9965.EPI-06-0938. PMID: 17684134. 
  32. Fuhrman BJ, Schairer C, Gail MH, Boyd-Morin J, Xu X, Sue LY, Buys SS, Isaacs C, Keefer LK, Veenstra TD, Berg CD, Hoover RN, Ziegler RG. Estrogen metabolism and risk of breast cancer in postmenopausal women. J Natl Cancer Inst. 2012 Feb 22;104(4):326-39. doi: 10.1093/jnci/djr531. Epub 2012 Jan 9. PMID: 22232133; PMCID: PMC3283536. 
  33. Sampson JN, Falk RT, Schairer C, Moore SC, Fuhrman BJ, Dallal CM, Bauer DC, Dorgan JF, Shu XO, Zheng W, Brinton LA, Gail MH, Ziegler RG, Xu X, Hoover RN, Gierach GL. Association of Estrogen Metabolism with Breast Cancer Risk in Different Cohorts of Postmenopausal Women. Cancer Res. 2017 Feb 15;77(4):918-925. doi: 10.1158/0008-5472.CAN-16-1717. Epub 2016 Dec 23. PMID: 28011624; PMCID: PMC5313342. 
  34. Moore SC, Matthews CE, Ou Shu X, Yu K, Gail MH, Xu X, Ji BT, Chow WH, Cai Q, Li H, Yang G, Ruggieri D, Boyd-Morin J, Rothman N, Hoover RN, Gao YT, Zheng W, Ziegler RG. Endogenous Estrogens, Estrogen Metabolites, and Breast Cancer Risk in Postmenopausal Chinese Women. J Natl Cancer Inst. 2016 May 18;108(10):djw103. doi: 10.1093/jnci/djw103. PMID: 27193440; PMCID: PMC5858156. 
  35. Dallal CM, Tice JA, Buist DS, Bauer DC, Lacey JV Jr, Cauley JA, Hue TF, Lacroix A, Falk RT, Pfeiffer RM, Fuhrman BJ, Veenstra TD, Xu X, Brinton LA; B~FIT Research Group. Estrogen metabolism and breast cancer risk among postmenopausal women: a case-cohort study within B~FIT. Carcinogenesis. 2014 Feb;35(2):346-55. doi: 10.1093/carcin/bgt367. Epub 2013 Nov 8. PMID: 24213602; PMCID: PMC3908751. 
  36. Falk RT, Brinton LA, Dorgan JF, Fuhrman BJ, Veenstra TD, Xu X, Gierach GL. Relationship of serum estrogens and estrogen metabolites to postmenopausal breast cancer risk: a nested case-control study. Breast Cancer Res. 2013 Apr 22;15(2):R34. doi: 10.1186/bcr3416. PMID: 23607871; PMCID: PMC4053199. 
  37. Muti P, Bradlow HL, Micheli A, Krogh V, Freudenheim JL, Schünemann HJ, Stanulla M, Yang J, Sepkovic DW, Trevisan M, Berrino F. Estrogen metabolism and risk of breast cancer: a prospective study of the 2:16alpha-hydroxyestrone ratio in premenopausal and postmenopausal women. Epidemiology. 2000 Nov;11(6):635-40. doi: 10.1097/00001648-200011000-00004. PMID: 11055622. 
  38. Xu S, Sun J, Zhang Y, Ji J, Sun X. Opposite estrogen effects of estrone and 2-hydroxyestrone on MCF-7 sensitivity to the cytotoxic action of cell growth, oxidative stress and inflammation activity. Ecotoxicol Environ Saf. 2021 Feb;209:111754. doi: 10.1016/j.ecoenv.2020.111754. Epub 2020 Dec 13. PMID: 33321418. 
  39. Huang J, Sun J, Chen Y, Song Y, Dong L, Zhan Q, Zhang R, Abliz Z. Analysis of multiplex endogenous estrogen metabolites in human urine using ultra-fast liquid chromatography-tandem mass spectrometry: a case study for breast cancer. Anal Chim Acta. 2012 Jan 20;711:60-8. doi: 10.1016/j.aca.2011.10.058. Epub 2011 Nov 7. PMID: 22152797. 
  40. Park SA, Lee MH, Na HK, Surh YJ. 4-Hydroxyestradiol induces mammary epithelial cell transformation through Nrf2-mediated heme oxygenase-1 overexpression. Oncotarget. 2017 Jan 3;8(1):164-178. doi: 10.18632/oncotarget.10516. PMID: 27438141; PMCID: PMC5352084. 
  41. Lábas A, Krámos B, Oláh J. Combined Docking and Quantum Chemical Study on CYP-Mediated Metabolism of Estrogens in Man. Chem Res Toxicol. 2017 Feb 20;30(2):583-594. doi: 10.1021/acs.chemrestox.6b00330. Epub 2016 Dec 14. PMID: 27966929. 
  42. Arslan AA, Koenig KL, Lenner P, Afanasyeva Y, Shore RE, Chen Y, Lundin E, Toniolo P, Hallmans G, Zeleniuch-Jacquotte A. Circulating estrogen metabolites and risk of breast cancer in postmenopausal women. Cancer Epidemiol Biomarkers Prev. 2014 Jul;23(7):1290-7. doi: 10.1158/1055-9965.EPI-14-0009. Epub 2014 Apr 27. PMID: 24769889; PMCID: PMC4082442. 
  43. Sepkovic DW, Bradlow HL. Estrogen hydroxylation--the good and the bad. Ann N Y Acad Sci. 2009 Feb;1155:57-67. doi: 10.1111/j.1749-6632.2008.03675.x. PMID: 19250192. 
  44. Wiggs AG, Chandler JK, Aktas A, Sumner SJ, Stewart DA. The Effects of Diet and Exercise on Endogenous Estrogens and Subsequent Breast Cancer Risk in Postmenopausal Women. Front Endocrinol (Lausanne). 2021 Sep 20;12:732255. doi: 10.3389/fendo.2021.732255. PMID: 34616366; PMCID: PMC8489575. 
  45. Guinter MA, McLain AC, Merchant AT, Sandler DP, Steck SE. A dietary pattern based on estrogen metabolism is associated with breast cancer risk in a prospective cohort of postmenopausal women. Int J Cancer. 2018 Aug 1;143(3):580-590. doi: 10.1002/ijc.31387. Epub 2018 Apr 6. PMID: 29574860; PMCID: PMC6019153. 
  46. Muti P, Bradlow HL, Micheli A, Krogh V, Freudenheim JL, Schünemann HJ, Stanulla M, Yang J, Sepkovic DW, Trevisan M, Berrino F. Estrogen metabolism and risk of breast cancer: a prospective study of the 2:16alpha-hydroxyestrone ratio in premenopausal and postmenopausal women. Epidemiology. 2000 Nov;11(6):635-40. doi: 10.1097/00001648-200011000-00004. PMID: 11055622. 
  47. Szaefer H, Licznerska B, Sobierajska H, Baer-Dubowska W. Breast Cancer Cytochromes P450: Chemopreventive and/or Therapeutic Targets for Naturally Occurring Phytochemicals. Molecules. 2025 Jul 23;30(15):3079. doi: 10.3390/molecules30153079. PMID: 40807256; PMCID: PMC12348687. 
  48. Takemura H, Sakakibara H, Yamazaki S, Shimoi K. Breast cancer and flavonoids - a role in prevention. Curr Pharm Des. 2013;19(34):6125-32. doi: 10.2174/1381612811319340006. PMID: 23448447. 

TAGS

Women's Health

Estrogen

Estrogen Detoxification

Estrogen Metabolism

Breast Cancer

Breast Health