BREAST HEALTH AND HORMONES: GOING BEYOND CANCER PREVENTION

Lauren Young, ND

OBJECTIVES

The importance of breast wellness, not just

breast cancer treatment

Role of hormones and their metabolites

with breast health

How to modify your hormones and improve breast health

WHY TALK BREAST HEALTH?

- 1 in 8 women in the US will develop breast cancer
- Increasing 0.5% a year
- 3.8 million women in the US are breast cancer survivors
- Deaths from Breast Cancer have declined since 1989- over decline of 43%

"Breast Cancer Statistics: How Common Is Breast Cancer?" Breast Cancer Statistics | How Common Is Breast Cancer? | American Cancer Society, www.cancer.org/cancer/types/breastcancer/about/how-common-is-breast-cancer.html. Accessed 2 Aug. 2023.

INCREASE RISKS TO BREAST TISSUE

- Delay in motherhood
- Less women becoming mothers
- Increased exposure to Xenobiotics
- HRT use
- Obesity
- Alcohol

PREVENTION: SCREENING TOOLS

- Mammogram
- Thermogram
- Ultrasound
- MRI
- Self Exams
- FNA

MINDFUL OF TRANSGENDER PATIENTS RISK

Gender affirming care may alter the risk for breast cancer in patients

- Transmasculine
 patient- decreased risk
 with hormone therapy
- Transfeminine patientincreased risk with hormone therapy

Age, use of gender-affirming hormone treatment and breast cancer risk	Mammography	Breast MRI or breast ultrasound
Ages 40 and older, with past or current hormone use for 5 years or more and at average risk of breast cancer	May be appropriate	Not recommended
Any age, with no hormone use or less than 5 years of hormone use and at average risk of breast cancer	Not recommended	Not recommended
Ages 25-30, with past or current hormone use for 5 years or more and at higher risk of breast cancer	Usually appropriate	Not recommended
Ages 25-30 with no hormone use or less than 5 years of hormone use and at higher risk of breast cancer	May be appropriate	Not recommended

https://www.komen.org/breast-cancer/screening/when-to-screen/transgender-people/

PREVENTION: KEEPING THE TISSUE HEALTHY

LISTENING TO WHAT BREAST TISSUE IS TRYING TO TELL US

CONVENTIONAL TREATMENT OPTIONS FROM UPTODATE

BENIGN BREAST CONDITIONS

There is varied literature, ranging from 30 to 60% of all women. It is most common in women between the ages of 30 to 50 years

Up to 50% risk of developing breast cancer with certain conditions.

Risk Factors:

- obesity

- hormone replacement increases the risk of benign breast diseases.

- a family history of breast cancer has been associated with an increased risk of benign breast diseases, predominantly at premenopausal ages.

NONPROLIFERATIVE

- not associated with an increase risk of breast cancer

- breast cysts
- Galactoceles
- Papillary apocrine changes
- Epithelial related calcifications
- mild hyperplasia

PROLIFERATIVE WITHOUT ATYPIA

1.5 to 2 times that of the general population risk of developing breast cancer

- usual ductal hyperplasia
- intraductal papillomas
- sclerosing adenosis
- radial scars
- adenomas
- fibroadenomas
- pseudoangiomatous stromal hyperplasia

ATYPIA HYPERPLASIA

High risk for developing breast cancer

- atypical ductal hyperplasia (ADH)
- atypical lobular hyperplasia (ALH)
- lobular carcinoma in situ (LCIS).

Flat epithelial atypia (FEA) is also an atypical proliferation but does not appear to convey an elevation in cancer risk.

BREAST TISSUE RESPONSES TO HORMONES

ORIGINAL ARTICLE

Benign Breast Disease and the Risk of Breast Cancer

Lynn C. Hartmann, M.D., Thomas A. Sellers, Ph.D., Marlene H. Frost, Ph.D., Wilma L. Lingle, Ph.D., Amy C. Degnim, M.D., Karthik Ghosh, M.D., Robert A. Vierkant, M.A.S., Shaun D. Maloney, B.A., V. Shane Pankratz, Ph.D., David W. Hillman, M.S., Vera J. Suman, Ph.D., Jo Johnson, R.N., et al.

Published in final edited form as: <u>Cancer Epidemiol Biomarkers Prev. 2008 Sep; 17(9): 2337–2343.</u> Published online 2008 Aug 25. doi: <u>10.1158/1055-9965.EPI-08-0380</u>

Estrogen plus Progestin and Risk of Benign Proliferative Breast Disease

<u>Thomas E Rohan, ¹ Abdissa Negassa, ¹ Rowan T Chlebowski, ² Norman L. Lasser, ³ Anne McTiernan, ⁴</u> <u>Robert S. Schenken, ⁵ Mindy Ginsberg, ¹ Sylvia Wassertheil-Smoller, ¹ and David L. Page^{6,*}</u>

► Author information ► Copyright and License information PMC Disclaimer

The publisher's final edited version of this article is available at Cancer Epidemiol Biomarkers Prev

Abstract

Go to: 🕨

PMID: 18725513

Women with benign proliferative breast disease are at increased risk of subsequent

INCREASED HORMONES; INCREASED DENSITY

"Women with dense tissue in at least 75% of the breast have been shown to have a 4-to 6-fold increase in the risk of subsequent breast cancer (compared to the risk for those with low density)"

A relatively high mammographic density has also been associated with a ninefold increase in risk of atypical hyperplasia and a twelve-fold increase in risk of hyperplasia without atypia

PROTECTING BREASTS MEANS PAYING ATTENTION TO THEM

- Cyclical symptoms
- Examine hormones
- Monitoring activity of any benign breast lesions

OPPORTUNITY FOR BALANCE

18

- Address estrogen balance
- Address estrogen metabolites

MEET THE ESTROGENS

Brought to you by an AI photo generator

- Promote growth
- Body development
- Bone growth/prevent loss

Decrease in Estrogen impacts:

- Cardiovascular system
- Insulin resistance
- Lower neurotransmitters
- Connective and reproductive tissues

ESTRADIOL (E2)

- Primarily synthesized by developing follicle in the ovaries
- Reversibly converted into estrone by enzyme 17b- hydroxysteroid dehydrogenase Type II
- Predominate prior to Menopause
- Considered the strongest Estrogen

ESTRONE (E1)

- Primarily synthesized by androstenedione by aromatase conversion in the ovaries, but also the adrenal gland and adipose tissue
- Predominate after Menopause—When your period says "You're on your own" (Estr-OWN)
- Can convert into Estradiol
- More of an affinity to alpha estrogen receptors
- Considered the "weakest" estrogen

ESTRIOL (E3)

- Synthesized from estrone, which can be converted from the hydroxylation of estradiol or 16-hydroxysterone often with the placenta
- Elevated during pregnancy
- Considered a weak estrogen
- Utilized in bioidentical hormones
- More of an affinity to beta estrogen receptors

AFFINITY FOR SPECIFIC ESTROGEN RECEPTORS

	Estrogen Receptor- Alpha	Estrogen Receptor- Beta
17- Beta-estradiol	100	100
17- alpha-estradiol	58	11
Estriol	14	21
Estrone	60	37
4-OH-Estradiol	13	7
2-OH-Estrone	2	0.2
Tamoxifen	4	3
Raloxifene	69	16

Boothby, Lisa A., et Al. "Bio identical hormone therapy: a review" in Menopause, 2004, vol 11, No. 3, pp.356-367

A BRIEF HISTORY OF ESTROGEN METABOLITES

URINARY ESTROGEN METABOLITES

URINARY ESTROGEN METABOLITES

"WHAT MAN SEES DEPENDS BOTH UPON WHAT HE LOOKS AT AND ALSO UPON WHAT HIS PREVIOUS VISUAL-CONCEPTION EXPERIENCE HAS TAUGHT HIM TO SEE." 27

— THOMAS S. KUHN

STUDIES CONTRADICTING THE 2:16 RATIO

ENZYME IMMUNOASSAYS (EIA) VERSES LIQUID CHROMATOGRAPHY-TANDEM MASS SPECTROMETRY (LC-MS/MS)

Review > Steroids. 2015 Jul;99(Pt A):67-75. doi: 10.1016/j.steroids.2015.02.015. Epub 2015 Feb 26.

Epidemiologic studies of estrogen metabolism and breast cancer

Regina G Ziegler ¹, Barbara J Fuhrman ², Steven C Moore ², Charles E Matthews ²

Affiliations + expand PMID: 25725255 PMCID: PMC5722219 DOI: 10.1016/j.steroids.2015.02.015 Free PMC article

Abstract

Early epidemiologic studies of estrogen metabolism measured only 2-hydroxyestrone and 16α hydroxyestrone and relied on direct enzyme immunoassays without purification steps. Eight breast cancer studies have used these assays with prospectively collected blood or urine samples. Results were inconsistent, and generally not statistically significant; but the assays had limited specificity, especially at the low concentrations characteristic of postmenopausal women. <mark>To facilitate continued</mark> testing in population-based studies of the multiple laboratory-based hypotheses about the roles of estrogen metabolites, a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay was developed to measure concurrently all 15 estrogens and estrogen metabolites in human serum and urine, as unconjugated and total (glucuronidated+sulfated+unconjugated) concentrations. The assay has high sensitivity (lower limit of quantitation \sim 1-2 pmol/L), reproducibility (coefficients of variation generally <5%), and accuracy. Three prospective studies utilizing this comprehensive assay

"Women with more extensive hydroxylation along the 2-pathway may have a reduced risk of postmenopausal breast cancer."

Comparative Study > Breast Cancer Res. 2013 Apr 22;15(2):R34. doi: 10.1186/bcr3416.

Relationship of serum estrogens and estrogen metabolites to postmenopausal breast cancer risk: a nested case-control study

Roni T Falk, Louise A Brinton, Joanne F Dorgan, Barbara J Fuhrman, Timothy D Veenstra, Xia Xu, Gretchen L Gierach

PMID: 23607871 PMCID: PMC4053199 DOI: 10.1186/bcr3416 Free PMC article

Abstract

Introduction: Elevated levels of circulating estrogens are linked to breast cancer risk among postmenopausal women but little is known about the importance of estrogen metabolism. A recently developed liquid chromatography tandem mass spectrometry-based method (LC-MS/MS) measuring a panel of 15 estrogen metabolites (EM) has been evaluated in one study, linking high levels of 2-pathway metabolites relative to the parent estrogens to reduced breast cancer risk. We analyzed this panel of EM in a nested case-control study of postmenopausal breast cancer.

CONCLUSION: METABOLITES ARE IMPORTANT!

THE GOOD, THE BAD AND THE UGLY

2-HYDROXYESTRONE (2-OHE1)

2-HYDROXYESTRONE (2-OHE1)

"2-OHE1metabolite has very little estrogen receptor binding affinity, and has been shown to decrease cell proliferation by 20 to 30% in cultured breast cancer cell lines."

Comparative Study > Reprod Biol Endocrinol. 2010 Aug 2;8:93. doi: 10.1186/1477-7827-8-93.

Comparison of estrogens and estrogen metabolites in human breast tissue and urine

Emanuela Taioli¹, Annie Im, Xia Xu, Timothy D Veenstra, Gretchen Ahrendt, Seymour Garte

Affiliations + expand PMID: 20678202 PMCID: PMC2922211 DOI: 10.1186/1477-7827-8-93 Free PMC article

Abstract

Background: An important aspect of the link between estrogen and breast cancer is whether urinary estrogen levels are representative of the intra-tissue levels of bioavailable estrogens.

Methods: This study compares 15 estrogen and estrogen metabolite levels in breast tissue and urine of 9 women with primary breast cancer using a quantitative liquid chromatography-mass spectrometry method.

Results: The average levels of estrogens (estrone, 17 beta-estradiol) were significantly higher in breast tissue than in urine. Both the 2 and the 16-hydroxylation pathways were less represented in breast tissue than urine; no components of the 4-hydroxypathway were detected in breast tissue, while 4-hydroxyestrone was measured in urine. However, the 2/16 ratio was similar in urine and breast tissue. Women carrying the variant CYP1B1 genotype (Leu/Val and Val/Val) showed significantly lower overall

4-HYDROXYESTRONE (4-OHE1)

- Associated with increased breast cancer risk
- Increased amounts found in preparation of adenocarcinoma cells
- More reactive and considered less safe

Comparative Study > Reprod Biol Endocrinol. 2010 Aug 2;8:93. doi: 10.1186/1477-7827-8-93.

Comparison of estrogens and estrogen metabolites in human breast tissue and urine

Emanuela Taioli ¹, Annie Im, Xia Xu, Timothy D Veenstra, Gretchen Ahrendt, Seymour Garte

Affiliations + expand PMID: 20678202 PMCID: PMC2922211 DOI: 10.1186/1477-7827-8-93 Free PMC article

Abstract

Background: An important aspect of the link between estrogen and breast cancer is whether urinary estrogen levels are representative of the intra-tissue levels of bioavailable estrogens.

Methods: This study compares 15 estrogen and estrogen metabolite levels in breast tissue and urine of 9 women with primary breast cancer using a quantitative liquid chromatography-mass spectrometry method.

Results: The average levels of estrogens (estrone, 17 beta-estradiol) were significantly higher in breast tissue than in urine. Both the 2 and the 16-hydroxylation pathways were less represented in breast tissue than urine; no components of the 4-hydroxypathway were detected in breast tissue, while 4-hydroxyestrone was measured in urine. However, the 2/16 ratio was similar in urine and breast tissue. Women carrying the variant CYP1B1 genotype (Leu/Val and Val/Val) showed significantly lower overall

16A-HYDROXYESTRONE (16A-OHE1)

"16a-OHE1 metabolite is a potent estrogenic molecule that activates the ER and induces proliferation of cultured breast cancer cells by 40%."

Comparative Study > Reprod Biol Endocrinol. 2010 Aug 2;8:93. doi: 10.1186/1477-7827-8-93.

Comparison of estrogens and estrogen metabolites in human breast tissue and urine

Emanuela Taioli¹, Annie Im, Xia Xu, Timothy D Veenstra, Gretchen Ahrendt, Seymour Garte

Affiliations + expand PMID: 20678202 PMCID: PMC2922211 DOI: 10.1186/1477-7827-8-93 Free PMC article

Abstract

Background: An important aspect of the link between estrogen and breast cancer is whether urinary estrogen levels are representative of the intra-tissue levels of bioavailable estrogens.

Methods: This study compares 15 estrogen and estrogen metabolite levels in breast tissue and urine of 9 women with primary breast cancer using a quantitative liquid chromatography-mass spectrometry method.

Results: The average levels of estrogens (estrone, 17 beta-estradiol) were significantly higher in breast tissue than in urine. Both the 2 and the 16-hydroxylation pathways were less represented in breast tissue than urine; no components of the 4-hydroxypathway were detected in breast tissue, while 4-hydroxyestrone was measured in urine. However, the 2/16 ratio was similar in urine and breast tissue. Women carrying the variant CYP1B1 genotype (Leu/Val and Val/Val) showed significantly lower overall

2:16 RATIO

Table 4.Association of Relative Risk Factors forBreast Cancer with 2/16α Ratios

Report	2/16 α Ratio	Relative Risk
1 [30]	< 1.80	1.00
	1.80-2.30	0.76
	2.31-2.72	0.60
	2.73-3.29	0.62
	> 3.29	0.55
2 [31]		Odds Ratio
	> 1.91	1.00
	1.38-1.90	1.50
	< 1.38	1.95

Goals:

- Increasing 2-OHE1
- Lowering 16a-OHE1 and 4-OHE1

SIDE NOTES

- No published literature on urinary estrogen metabolites and risk of breast cancer in women using estrogen replacement therapy
- Pre-menopausal- there isn't a substantial variation in metabolites throughout a woman's cycle. Testing can happen anytime.

MODIFYING OUR RISK

- Reduce exposure to Xenoestrogens
- Support Estrogen Detox
- Ensure Adequate Progesterone
 - Increases conversion of E2 to E1 (17b-hydroxysteroid dehydrogenase)
 - E1 to E1-SO4 (an inert form of estrogen)

ESTROGEN DETOX GOALS

Goals for Prevention:

- 1. Promote 2- (or even 4-) catechol estrogen pathways
- 2. Decrease 16-OHE pathway
- 3. Adequate methylation to avoid conversion to reactive estrogen quinones
- 4. Adequate glutathione to address any reactive estrogen quinones.

BETA- GLUCURONIDASE

https://doi.org/10.3390/cells8121642 Bouhnik et al., 1996 2. Walaszek et al., 1997 **Bifidobacterium** & **Calcium-D-Glucarate** have strong inhibiting qualities with Beta-glucuronidase!

pterostilbene⁶⁹

betaine (cofactors)

Please see the DUTCH Test Treatment Guide for other factors affecting the production of primary reproductive and adrenal hormones.

42

CRUCIFEROUS VEGETABLES

Glucobrassicin + Myrosinase =

INDOLE-3-CARBINOL (I3C)

3,3'-DIINDOLYLMETHANE (DIM)

- Initial substance created with masticating broccoli and other cruciferous vegetables
- Relatively unstable- quickly converts to DIM and other compounds
- Create when I3C encounters acid in our stomachs
- Active component that improves 2:16 ratio

REDUCE EXPOSURE TO ENDOCRINE DISRUPTORS

•Butylated hydroxyanisole, BHA (food preservative)

•Erythrosine (food coloring FD&C Red No. 3)

•Bisphenol A, BPA (polycarbonate plastic denoted as #7, #3 or PC on the recycling symbol)

•Polychlorinated biphenyls, PCBs (electrical oils, lubricants, adhesives, paints)

•Ethinylestradiol (birth control products)

•4- Methylbenyzlidene camphor, 4-MBC (sunscreen lotions)

•Parabens, commonly known as methylparaben, ethylparaben, propylparaben and butylparaben (cosmetics, lotions and shampoos)

REDUCE EXPOSURE TO ENDOCRINE DISRUPTORS

- Avoid plastics and Styrofoam interacting with foods- IE microwaving or heating
- Use Glass and stainless steel for foods/drinks
- Mindful of ingredients in cleaning supplies, makeup and foods
- Avoid canned foods- follow ewg.org for BPA lined can phase out

SUPPORT COMT

Agent Expression Fingerprint: COMT

CASE: LAURIE

- 78 yo women with a reoccurrence of ER/PR positive breast cancer a mastectomy 15 years prior
- 2G2P before age 30; no family history of breast cancer
- Retired school teacher. BMI 20
- Diet, sleep and exercise: A+
- Unremarkable medical history
- Previously had done a dried urine test- Poor 2:16 ratio
- Supplements: DIM 1/day, Calcium D-Glucarate 1/day, Magnesium glycinate 1/day, Vitamin D3 +K2 and Fish oil 1 tsp daily
- Doesn't swallow pills! Added these to a green shake daily

LAURIE PART 2

With reoccurrence, wanted to redo testing prior to starting Letrazole. Looked at Beta-glucuronidase as well as estrogen metabolites.

Persistently low 2/16 ratio. Beta-glucuronidase was still elevated.

Retesting is important! She's still doing well and took up boating!

Exclusive Hormone Education for DUTCH Providers

DUTCH Interpretive Guide

Mastering Functional Hormone Testing Course

Group Mentorship Sessions

Click the Link Below to Become a DUTCH Provider Today!

©2023 DUTCH Test

RESOURCES

Ziegler RG, Fuhrman BJ, Moore SC, Matthews CE. Epidemiologic studies of estrogen metabolism and breast cancer. Steroids. 2015;9

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5722219/pdf/nihms677594.pdf

Falk RT, Brinton LA, Dorgan JF, et al. Relationship of serum estrogens and estrogen metabolites to postmenopausal breast cancer risk: a nested case-control study. Breast Cancer

Res. 2013;15(2):R34. Published 2013 Apr 22.

Dallal CM, Tice JA, Buist DS, et al. Estrogen metabolism and breast cancer risk among postmenopausal women: a case-cohort study within B~FIT. Carcinogenesis, 2014;35(2):346-355.

PubChem. Indole-3-carbinol. https://pubchem.ncbi.nlm.nih.gov/compound/3712 [Accessed October 13, 2020.]

PubChem. 3,3'-Diindolylmethane. https://pubchem.ncbi.nlm.nih.gov/compound/3071 Accessed October 8, 2020.

Reed G, Arneson D, Putnam W, et al. Single-dose and multiple-dose administration of indole-3-carbinol to women: pharmacokinetics based on 3,3'-diindolylmethane. Cancer Epidemiol Biomarkers. Prev 2006;15(12):2477-2481.

Diindolylmethane (DIM) Information Resource Center - UC Berkeley - Formation. https://www.diindolylmethane-dim.com/formation.htm#.X39kbJpKhPZ [Accessed October 8, 2020] Lundberg FE, Iliadou AN, Rodriguez-Wallberg K, Gemzell-Danielsson K, Johansson ALV. The risk of breast and gynecological cancer in women with a diagnosis of infertility: a nationwide population-based study. Eur J Epidemiol. 2019 May;34(5):499-507. McMullen ER, Zoumberos NA, Kleer CG. Metaplastic Breast Carcinoma: Update on Histopathology and Molecular Alterations. Arch Pathol Lab Med. 2019 Dec;143(12):1492-1496.