How to reset your stress response: function, evaluation, and considerations

Debbie Rice ND MPH Director of Clinical Education DUTCH TEST

DISCLAIMER

 The purpose of this discussion is for education and information purposes only and not intended for treatment or to be used in place of medical evaluation or care.

STRESS RESPONSE

- What is Stress?
 - Stress is anything that creates an imbalance in your system
 - Homeostasis: maintain a steady state, or optimal stability (think temperature, fluid balance, mood, energy, blood sugar, etc)
- Where does stress come from?
 - REAL vs
 - PERCEIVED
 - All the same response
 - The body does not have a "good" or "bad" category of stress

STRESS RESPONSE – hormones involved

- Adrenal Glands Produce:
- (3 zones for hormone production in the adrenal cortex)
 - Cortisol
 - Adrenal Cortex: Zona Fasciculata
 - DHEA/DHEA-s
 - Adrenal Cortex: Zona Reticularis
 - Aldosterone
 - Adrenal Cortex: Zona Glomerulosa
 - Catecholamines
 - Adrenal Medulla: Epinephrine and
 - Norepinephrine

STRESS RESPONSE – HPA Axis

- HPA = Hypothalamic Pituitary Adrenal Axis
- Hypothalamus → CRH/CRF (In the PVN)
- CRH → Pituitary Gland
- Pituitary Gland → ACTH
- ACTH → Adrenal Glands
- Adrenal Glands → Cortisol

STRESS RESPONSE — HPA Axis

- Cortisol Response vs Catecholamine Response
- Cortisol (Adrenal Cortex) SLOW
 - The body makes cortisol as needed when signaled it is not made then stored
 - This usually occurs after a stressor signals the BRAIN
 - Lag time is usually about 10 minutes after Epi/Norepi have been released
- Catecholamines (Adrenal Medulla) FAST
 - Immediate release of stored epinephrine and norepinephrine
 - These are amines the body makes then stores to be at the ready for a threat!
 - This is signaled through the spinal cord and not through the brain

STRESS RESPONSE – Cortisol Response

Cortisol

- Produced in the zona fasiculata in the adrenal cortex of the adrenal glands
- It is a glucocorticoid (steroid hormone that utilizes sugar and fats to mediate an antiinflammatory response; can influence immune response)
- Cortisol is released in response to stress. It is also released in the presence of low blood sugar (which is a stressor).
 - Cortisol blocks insulin to keep glucose in the blood stream
 - Cortisol induces gluconeogenesis (break down of glucose from fat cells/liver)
 - Cortisol reduces protein uptake (diverts it to gluconeogenesis to keep glucose in circulation)
 - Cortisol suppresses the immune system to deal with the stress
 - Cortisol increases blood pressure (vasoconstriction)
 - Cortisol improves focus (mental and physical), improves eyesight

STRESS RESPONSE – Cortisol Response

Short Term Effect of Cortisol Release:

- Anti-inflammatory
- Ability to have energy to fight, deal with stress
- Increased focus
- Increased blood pressure (vasoconstriction)
- Increased HR and blood flow to muscles
- Decreased digestive effort
- Decreased sex hormone response
- Decreased immune response

STRESS RESPONSE – Cortisol Response

Long Term Effect of Cortisol Release:

- Insulin dysregulation
- Blood sugar irregularities/dysglycemia diabetes
- Weight gain, specifically around the middle
- Immune suppression, immune dysregulation
- Chronic Fatigue
- Gastrointestinal Issues parasympathetic nervous system suppression
- Cardiovascular Concerns blood vessel constriction, over compensation of the cardiovascular system (high blood pressure)
- Sex Hormone Imbalances, infertility, irregular periods, heavy periods, low libido/sex drive

STRESS RESPONSE – Cortisol Highs and Lows

HIGH Cortisol

 Cushings – a pathology of consistently high levels of cortisol, usually from a tumor that encourages improper and constant signaling to release cortisol

LOW cortisol

 Addison's – when the body does not have enough cortisol (or aldosterone). This can be a life-threatening disease and needs appropriate treatment

STRESS RESPONSE – "Adrenal Fatigue"

- Old school thought process for adrenal function
 - Implies the adrenal glands are not able to respond
- More appropriately, it is categorized as HPA (axis) dysfunction or HPA (axis) imbalance
 - This points more specifically and accurately to poor functioning of the brain to adrenal communication
 - Support appropriate language to clarify the need for how to evaluate the issue and best treatment modalities (Hypothalamic and/or Pituitary vs adrenal gland support)

STRESS RESPONSE – Accurate Physiology

STRESS RESPONSE – Pregnenolone and appropriate metabolism

- Cholesterol is the backbone for hormone production
- Different cells have different responsibilities with different enzymes to do their job
- Zona Fasiculata makes cortisol. It has to have specific enzymes to do this from cholesterol.
 - (ie the ovaries have a specific job to make progesterone but they use a particular cell with specific enzymes to make progesterone once that particular cell pulls cholesterol in)

STRESS RESPONSE – cholesterol metabolism in

adrenal function

- Guilliams, Tom. 2019. The
- Standard. Maintaining HPA Axis
- Adaptability: Vol 15; 11.

- The glucocorticoid must be transported into the cell
- Cortisol does not need a transporter to get inside the cell
- Once inside the cell it binds to a Glucocorticoid Receptor (GR)
- Once bound, the GR carries cortisol with help of a "chaperone" called HSP90
- HSP90 is the carrier to pull cortisol via the GR from the cytoplasm of the cell to the mitochondria of the cell
- Once inside the mitochondria, HSP90 allows cortisol to unbind from the GR and act on the cell for the cortisol response

• **GR**

 The GR can bind to multiple steroid hormones including estradiol, androgens like Testosterone, Aldosterone, and progesterone; here the focus is on Cortisol

HSP 90

- Heat Shock Protein 90
- Protects cells from "heat shock" but also from a multitude of stressors
- Also known as "stress proteins"

- Heat Shock Protein (HSP)
 - Responsible for appropriate "presentation" and "folding" of proteins
 - Think of how a DNA helix is organized if this is not organized in a particular manner, the DNA does not work appropriately. This is the same for other proteins
 - HSP is responsible for watching over and ensuring all proteins have appropriate structure to do their job(s)
- Heat Shock Protein 90
 - Helps with appropriate protein folding
 - Maintains an open site for GR binding
 - Assists in transport of glucocorticoids and other hormones
 - Assists in cell signaling
 - Supports angiogenesis (good and bad)
- Heat Shock Protein 70
 - Protects cells from Oxidative Stress
 - Disposes of damaged proteins
 - Inhibits apoptosis
 - Hsp90/Hsp70 can work together to transfer proteins

- HSP
 - Organizes
 - Transports
 - Protects
 - Realigns

- Deactivation happens in the kidney
- Reactivation can occur in fat cells and the liver

- >5% of cortisol is free
- THF = Cortisol
 Metabolites
- THE = Cortisone
 Metabolites
- 11b-HSD 1
 - Activates to cortisol
- 11b-HSD 2
 - Deactivates to cortisone

STRESS RESPONSE - DHEA

- DHEA Dehydroepiandrosterone; produced in the adrenal glands (adrenal cortex), gonads, and the brain
- DHEA is seen as a parent hormone it is a major precursor to most other steroid hormones
- DHEA plays in both the sex hormone and adrenal hormone worlds
 - DHEA supplies about 75% of estrogens to pre-menopausal women, and in menopause [androgens] supply 100% of estrogens
 - DHEA-sulfate does not cross the blood brain barrier
 - DHEA-sulfate does not follow a diurnal pattern through the day, it is constant and most abundant, and is therefore a better measurement of adrenal/stress reserve
 - DHEA and DHEA-S have been found to heavily influence brain and nervous system functions – specifically mood, neurotransmitter regulation and production (more specifically with dopamine), immune function, and endothelial function
 - DHEA is still not greatly understood though there is a lot of new information and research regarding its purpose and function

DHEA (Active)

DHEA to DHEA-s needs a sulfur donor

DHEA-s to DHEA requires cysteine

DHEA has a diurnal rhythm

DHEA-s does not have a diurnal rhythm

DHEA-S (Inactive)

DHEA-S (Inactive)

STRESS RESPONSE – Diurnal Pattern

- DHEA has a diurnal pattern similar to Cortisol
- Cortisol should follow a diurnal [circadian] pattern
- Cortisol starts to rise before waking
- Cortisol peaks as the sun peaks, then wanes into the evening

Melatonin takes over at night when cortisol levels should be

low

STRESS RESPONSE – Sympathetic vs Parasympathetic Nervous System response

- Sympathetic Nervous System
 - Run, Fight, Flight
 - Action

- Parasympathetic Nervous System
 - Rest
 - Digest
 - Calm

STRESS RESPONSE – how to evaluate

- Understand physiology and function
 - The how and what (what hormones do what and how)
- Understand the players in the game
 - The what (enzymes, protein carriers, signalers, etc)
- Understand the influencers
 - These are the contributing factors to the situation
- Understand how and what to test
 - Which hormones are we looking at
 - What are the best methods to measure function

STRESS RESPONSE – how to evaluate Influencers

The Influencers:

- Lifestyle
- Stressors
- Sleep pattern
- Blood sugar regulation
- Inflammatory triggers
- Oxidative stress
- Mitochondrial health

STRESS RESPONSE – how to evaluate Influencers

- Mitochondrial Health = Cellular Health
- Manage your Mitochondrial House
- Weak Mitochondria = weak cellular function = weak metabolism of hormones and execution of overall function
- Individual components
 - HSP less damage to cells, less shock to cells, improved cellular function

STRESS RESPONSE — how to evaluate Influencers

- Support cellular and mitochondrial health
- Diet: anti inflammatory, individualized
- Sleep and Circadian hygiene
- Optimal immune function
- Optimal glycemic regulation (blood sugar)
- Supportive nutrients and supplements

STRESS RESPONSE – Supportive Measures Mitochondrial and Cellular Health

- CoQ10
- Suflorophane
- Quercetin
- Alpha Lipoic Acid
- Glutathione
- NAC (N-Acetyl-Cysteine)
- Resveratrol
- Vit E
- B Vitamins
- PQQ
- Melatonin

- Think of cofactors for Mitochondrial function:
- NAD
- FAD
- Carnitine
- Magnesium
- Iron
- Oxygen
- Strength Training/movement
- Anti-Inflammatory Foods
- Routine sleep
- Detox Support:
 - Sauna
 - Infrared
 - Hot/Cold

- We want to see:
- Cortisol Production capacity (Met Cort)
- Amount of Free Cortisol
- How the cortisol is used throughout the day (pattern)

Flagship test: DUTCH COMPLETE

Dried Urine only

- 4 <u>urine</u> samples done throughout the day and dried
 - 1. Dinner time
 - 2. Before bed
 - 3. First thing upon waking
 - 4. 2 hours after waking
 - Optional 5^{th (3rd)} strip if wake and urinate in the middle of the night

DUTCH PLUS – Urine PLUS Saliva for the CAR

- 5 **Saliva** collections
 - Waking, +30 min, +60 min, 5pm, Bedtime
 - Easier collections using cotton swabs
- 4 **Dried urine** collections (for metabolites)

- CAR Cortisol Awakening Response
- Mini stress test for HPA Axis function
 - Looking at the rise of cortisol from waking through 30 min post waking

STRESS RESPONSE – outcomes of longterm stress

Remember this? We don't want this to be a chronic issue

Long Term Effect of Cortisol Release:

- Insulin dysregulation
- Blood sugar irregularities/dysglycemia diabetes
- Weight gain, specifically around the middle
- Immune suppression, immune dysregulation
- Chronic Fatigue
- Gastrointestinal Issues parasympathetic nervous system suppression
- Cardiovascular Concerns blood vessel constriction, over compensation of the cardiovascular system (high blood pressure)
- Sex Hormone Imbalances, infertility, irregular periods, heavy periods, low libido/sex drive

STRESS RESPONSE – treatment and evaluation

- Lifestyle is the major contributing factor
 - Genetics also strongly influence this
 - Always question: HOW did we get here?
 - Remember: you can never out supplement a poor lifestyle!
- Stress Management
 - The way you interpret stress is likely different than the next
- Sleep Hygiene
- Blood Sugar regulation
- Body Movement
- Individual assessment, individual response customize how you will move forward with stress management

STRESS RESPONSE - considerations

- Breath work
- Meditation
- HPA Axis support could include:
 - Herbs such as gingko, ashwagandha, holy basil, rhodiola
 - Nutrients such as Magnesium, Trace Minerals, Zinc
- Sunshine and circadian balance
- Re-asses and re-evaluate priorities
- Build muscle mass
- Hugs/oxytocin release (pets, partners, family, friends)
- Grounding (feet on the grass/sand/ocean)

STRESS RESPONSE – Good Luck!

-that concludes our talk!
- Any questions, please reach out to:
- info@dutchtest.com

 Thank you for sharing your time with us today!

Instagram: drrice.Debbie

New Providers Receive 50% Off Up To 5 Testing Kits

Additional Benefits Include:

- Easy At-Home Collection
- Comprehensive Reporting Results
- Drop-Ship to Your Patient's Doorstep
- Quick Turn-Around Time on Lab Results

- Dedicated Onboarding Concierge to Help Providers Get Started
- Free Clinical Consults
- Video Tutorials
- Validated Peer-Reviewed Research

Click the link below to get started today!

References

- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2423429/
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4684129/
- https://www.ncbi.nlm.nih.gov/books/NBK538239/
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5964020/
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4166402/

